

Mini Satellite-Antenna Rotator

By

Julie VK3FOWL and Joe VK3YSP

10 DEGREE OF FREEDOM SENSOR

VECTOR DIAGRAM

ARDUINO-COMPATIBLE MICROCONTROLLER

MOTOR DRIVER

HI TORQUE DC MOTOR

PICTORIAL SCHEMATIC

PARTS LIST

Part	Description	Vendor	Qty	Total
Diecast box	HB5046 Sealed Diecast Aluminum Enclosure - 171 x 121 x 55	Jaycar	1	\$35.00
DC Motor	DC 12V 0.6RPM Low Speed High Torque Turbo Reducer Motor Right Angle Gear	еВау	2	\$17.00
DC Driver	LMD18200T DC Motor Driver Module Board PWM Adjustable Speed for Arduino Robot	еВау	2	\$15.00
Sensor	10DOF L3GD20 LSM303D BMP180 Gyro Accelerometer Compass Altimeter For Arduino	еВау	1	\$11.00
Controller	1x Brand New Pro Micro ATmega32U4 5V 16MHz Replace ATmega328 Arduino Pro Mini	еВау	1	\$7.00
Housing	HM3406 6 Pin 0.1 Header with Crimp Pins - 2.54 pitch	Jaycar	4	\$3.00
Header	HM3416 6 Pin 0.1 Straight Locking Header - 2.54 pitch - Single	Jaycar	4	\$2.40
Hub	YG2784 Aluminium Hub with Set Screws	Jaycar	1	\$8.95
Coupler	YG2600 Solid Shaft Couplers (Female) - Type I	Jaycar	1	\$9.95
Other	Lead Counterweight, 5mm O-Rings, 3mm Stand-Offs, Screws, Nuts			
Total				\$109.30

ROTATOR ASSEMBLY

LIFT-ARM AND SENSOR

ARDUINO SOFTWARE

SERIAL CONTROL

- Enter two integers AZ and EL in degrees separated by a space to manually control the rotator. e.g. 270 45<Enter> Note: AZ here works in either 0~180~360 or -180~0~180 degree format.
- r Reset. Prints the calibration data. Resets the rotator to the home position and resets the windup value.
- b Debug mode. Prints the raw sensor data: Mx, My, Mz, Gx, Gy and Gz.
- c Calibrate mode. Displays the calibration data only when it changes.
- d Demo mode. Tracks linearly through the following AZ/EL points in a cycle: 0/0, 90/90, 0/180, 90/90 0/0, -90/90, -180/0, -90/90, 0/0
- m Monitor mode. Prints current AZ and EL, set points for AZ and EL, the AZ windup angle, the AZ windup state, the AZ and EL error.
- a Abort Calibrate, Monitor or Demo mode
- e Enter Magnetic Declination. e.g. e11.7<Enter>. It is positive for East or negative for West.
- s Save Magnetic Declination and Calibration Data.

SENSOR CALIBRATION

- Send "e11.6" to set YOUR local magnetic declination. Send "c" to start calibration.
- Think of the sensor as a cube with six faces. GENTLY (without bumping or changing hands):
- Point each face in line with the Earth's magnetic field
- Point each face in line with the Earth's gravitational field
- Move about each point until the display below stops changing
- Send "s" to save the calibration data

PORTABLE SATELITE TERMINAL

GPREDICT SOFTWARE

ROTATOR CONTROL

RIG CONTROL

HAMLIB SOFTWARE

File Edit Tabs Help

```
rotctld, Hamlib 3.0.1
                                                Report bugs to <hamlib-developer@lists.sourceforge.net>
                                                rot:rot init called
                                                initrots3 easycomm called
File Edit Tabs Help
                                                rot register (201)
                                                rot register (202)
ft817: ft817 init called
rig:rig open called
                                                rot register (204)
                                               rot set conf: timeout='500'
ft817: ft817_open called
                                               rot:rot open called
Opened rig model 120, 'FT-817'
                                                Opened rot model 202, 'EasycommII'
Backend version: 0.5.1, Status: Beta
                                               Backend version: 0.4, Status: Beta
Connection opened from 127.0.0.1:52925
                                                Connection opened from 127.0.0.1:53069
ft817: cache invalid
                                                rotctl(d): p '' '' ''
ft817: requested freq = 435858342.000000 Hz
                                                easycomm rot get position called
t817: cache invalid
                                                easycomm transaction called: AZ EL
ft817: cache timed out (123 ms)
ft817: requested freq = 145947206.000000 Hz
                                               write block(): TX 7 bytes
ft817: cache timed out (433 ms)
                                               0000 41 5a 20 45 4c 20 0a
ft817: cache invalid
                                                                                                             AZ EL .
ft817: requested freq = 435858343.000000 Hz
                                                read string(): RX 15 characters
ft817: cache invalid
                                                        41 5a 31 36 37 2e 32 20 45 4c 2d 30 2e 39 0a
                                                                                                             AZ167.2 EL-0.9.
ft817: cache timed out (996 ms)
                                                easycomm transaction read string: AZ167.2 EL-0.9
ft817: cache timed out (871 ms)
ft817: requested freq = 435858345.000000 Hz
                                                easycomm rot get position got response: AZ167.2 EL-0.9
t817: cache invalid
ft817: cache timed out (998 ms)
                                                rotctl(d): P '167.68' '0.00' '' ''
ft817: cache timed out (873 ms)
                                                easycomm rot set position called: 167.679993 0.000000
ft817: requested freq = 435858346.000000 Hz
                                                easycomm transaction called: AZ167.7 ELO.O UPOOO XXX DNOOO XXX
ft817: cache invalid
ft817: cache timed out (998 ms)
                                               write block(): TX 34 bytes
ft817: cache timed out (872 ms)
                                                       41 5a 31 36 37 2e 37 20 45 4c 30 2e 30 20 55 50
                                                0000
                                                                                                             AZ167.7 EL0.0 UP
ft817: requested freq = 435858348.000000 Hz
                                                0010
                                                        30 30 30 20 58 58 58 20 44 4e 30 30 30 20 58 58
                                                                                                             000 XXX DN000 XX
ft817: cache invalid
                                                0020
                                                        58 0a
                                                                                                             х.
ft817: cache timed out (998 ms)
                                               Connection closed from 127.0.0.1:53069
ft817: cache timed out (871 ms)
ft817: cache timed out (997 ms)
ft817: cache timed out (996 ms)
ft817: requested freq = 435858351.000000 Hz
```

ft817: cache invalid

ft817: cache timed out (999 ms) ft817: cache timed out (861 ms)

SCALING UP

"It should be noted that this particular rotator is very light duty as it uses small and inexpensive motors. It would certainly not take the rigours of prolonged external use nor support a larger antenna". However, it can be scaled up using:

- 1. Larger geared motors up to 3A / 55V.
- 2. Flanged pillow bearings, sprocket and chain
- 3. 50A/60A/100A DC motor drivers. May use 2 PWM inputs or separate FWD/REW pins, so a small software modification is required.
- 4. CAT-V USB cable extenders up to 50m

WORKING FO-29 AT BRISBANE RANGES NP

SARC KIDS WORKING SO-50

SOURCES/LINKS

- http://www.sarcnet.org/projects/project_rotator.html
- http://gpredict.oz9aec.net/
- https://sourceforge.net/projects/hamlib/
- http://www.ngdc.noaa.gov/geomag-web/
- http://www.arrowantennas.com/arrowii/146-437.html
- http://www.arrowantennas.com/main/10w.html